Comparison of Slender Dowel-Type Fasteners for Slotted-in Steel Plate Connections under Monotonic and Cyclic Loading

Alexander Schreyer
Ph.D. Student, Adj. Faculty, UMass

Frank Lam
Associate Professor, UBC

Helmut Prion
Associate Professor, UBC

www.alexschreyer.de/projects/masters/
Overview

- Objectives for Study
- Connection Types
- Experiments
 - Test Setup
 - Results
- Analysis
 - Finite Element Model
 - Calibration
 - Results
- Summary and Conclusions
Objectives

- Study influence of fastener head geometry on behaviour of ductile wood-steel-wood connections
- Compare self-drilling fastener (SFS WS) to traditional dowel / bolt
- Predict monotonic and cyclic behaviour using a finite element model
- Include into model:
 - Head restraint
 - Hole tolerances
 - Fastener material fatigue
Connection Types

- **4 Fastener Types:**
 - Series D
 - Series E
 - Series F
 - Series G

- **73 Tests** (D, E, F, G)
- **5 / 2 Replications**
Experiments – Setup

- **Monotonic: Ramp**
- **Cyclic: CEN Protocol**
 - Yield Point Based
 - 3 Cycles per Step
 - Low Speed
Experiments – Monotonic Results

- **Ductile Failure:**
 - Mode II / III

- **Limited Wood Failure:**
 - E / F / G
 - Tension Only

- **Head Influences:**
 - Strength
 - SHT > T7-XXX
 - Resists Spreading

- **Series F:**
 - Load Increase
Experiments – Cyclic Results

- **Fatigue Failure**
 - 8-10 mm Displacement
- **No Ext. Wood Failure**
- **Fastener Permanent Elongation**
 - SHT Head Push-Out
- **Connection Slack Influence**

![Graph showing cyclic results](Series F (Composite Image))
Analysis – Finite Element Model

- **Original Model (Foschi):**
 - 1D Elasto-plastic Beam on Nonlinear Foundation
 - Layer Properties
 - Gaps

- **Modifications:**
 - Hole Tolerances
 - Fastener Head
 - Fastener Material Fatigue
 - Re-write / User Friendly
Analysis – Model Modifications

- **Hole Tolerances:**
 - Initial Gap

- **Fastener Head:**
 - Unidirectional Spring

Without:

With:

Effect:

Graphs showing load vs. displacement with and without modifications.
Analysis – Model Modifications

- **Fastener Material Fatigue:**
 - Linear Strength Reduction

- **Calibration:**
 - **Fastener Strength** → Tensile Tests
 - **Embedment Behaviour, Fastener Head Spring** → Series D Tests

\[\sigma_{y,\text{new}} = \sigma_y \cdot (1-\text{sffact}) \]
Analysis – Monotonic Results

- **Initial Stiffness:**
 - Good Representation

- **Yield Points:**
 - Underpredicted \((G_{SH} / G_{SHT})\)

- **Tangential Stiffness:**
 - Overpredicted (SHT, T7-XXX and T5-XXX)

 - Fastener Head Stiffness
 - Wood Failure

- **SH Best** Representation
Analysis – Monotonic Results

Deformed Shapes:

- Well Predicted:
 - Withdrawal
 - Yield Hinge Locations
 - Shape
Analysis – Cyclic Results

Effects from Modifications:

- ffact = 0.0000
 - HTol = 0.0/0.0
 - FheadSpring = none

- ffact = 0.0025
 - HTol = 0.5/1.5

- ffact = 0.0085
 - HTol = 0.5/1.5

- ffact = 0.0085
 - HTol = 1.0/1.0
 - FheadSpring = 5.5

E_SH
Analysis – Cyclic Results

- Hysteresis Shapes well Predicted:
 - SH Best
- Modifications Necessary
- Fatigue Behaviour:
 - Not as Catastrophic

Test:

Calculation:

E_T7-113_2
E_T7-113_4

ffact = 0.0085
NHTol = 1.0, PHTol = 1.0
FheadSpring = 2.0

Displacement [mm]
Load per Shear Plane [kN]
Displacement [mm]
Load per Shear Plane [kN]
Summary and Conclusions

- **Fastener Head:**
 - Increases Monotonic Strength, Resists Spreading of Wood

- **Cyclic Behaviour:**
 - Influenced by Fastener Head and Fastener Fatigue

- **Hole Tolerances:**
 - Influence Hysteresis Shape and Displacement Demand

- **Self-drilling Dowel (SFS WS):**
 - Improves Manufacturing, Strength, Stiffness
 - Cyclic Behaviour Comparable to Bolt

- **Finite-element Model:**
 - Inclusion of Modifications Essential
 - Simulated Behaviour Most Accurate for SH
Comparison of Slender Dowel-Type Fasteners for Slotted-in Steel Plate Connections under Monotonic and Cyclic Loading

Alexander Schreyer
Ph.D. Student, Adj. Faculty, UMass

Frank Lam
Associate Professor, UBC

Helmut Prion
Associate Professor, UBC

www.alexschreyer.de/projects/masters/