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ABSTRACT 
This paper presents a method to define the optimal wood 

stud wall arrangement with respect to structural and thermal 
performance criteria. Design variables are the stud dimensions 
w and d and the stud spacing e. 

To solve the optimization task (minimize the cost of the 
wall), an optimization routine based on genetic algorithms 
(GAs) was implemented into a Windows-based software. This 
software is capable of performing general GA optimization 
within an Excel spreadsheet. 

Two calibration cases – an unconstrained and a constrained 
function – were run using the software. It was found to perform 
well and GA parameters were optimized in a parametric study. 

Using the parameters found in the parametric study, the 
stud wall optimization was performed and compared to a 
gradient-based optimization method. While the accuracy of the 
results was within close proximity, the GA algorithm used far 
more function calls than the “classic method”. 

 
INTRODUCTION 

In the US, most residential houses are build using light 
wood framing (“stud framing”, “2x4 construction”, “stick-
built”, see Figure 1). This technology originated from the 
European tradition of half-timbered houses, which was brought 
to America by the first settlers. It is highly efficient since it uses 
small-dimension structural members and sheathing, which is 
fastened to the framing using light-gauge nails. While the 
structural members provide bending resistance and axial 
(compression) support, the sheathing provides racking strength, 
diaphragm action and continuous support against buckling. In 
the case of the interior-side gypsum wallboard (GWB), it also 
provides a finishable surface. A major benefit of this type of 
construction is that in its basic form (“platform framing”) it 
does not need heavy machinery and can be built using a small 
number of workers. 

 

 
Figure 1 - Light wood-framing construction site 

 
This paper seeks to define the “ideal” stud size and on-

center spacing given a set of realistic parameters together with 
constraints based on the structural and thermal performance of 
the wall. The basis of this hypothetical investigation is the 
difference between structural member and wall dimensions 
between the US and Europe. In the US it is common to build 
with 2x… sawn lumber material, which has an actual width of 
1.5 in. and depths of 1.5, 3.5, 5.5, 7.25, 9.25 and 11.25 in. Wall 
studs are typically 2x4s or 2x6s and on-center spacing of these 
studs in walls is typically 16 in. In Germany, construction 
lumber is sold in multiples of 20 mm and the typical stud size is 
60 mm x 120 mm. While the width is again held constant, the 
thickness can be increased up to 200 mm. On-center spacing is 
usually 625 mm. 

To reduce cut-offs of panel material, on-center spacing is in 
both cases set to an even fraction of the panel widths. In the US, 
the standard panel size is 4 ft x 8 ft and 16 in. is thus 1/3rd of the 
panel width. In Germany, the standard panel width is 1250 mm 
and 625 mm is half of that dimension.  
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Although an adherence to standard dimensions typically 
proves the most cost-effective route, newer research suggests, 
that larger panel dimensions can significantly increase racking 
strength [1]. Since most panels nowadays are made of Oriented 
Strand Board (OSB), which can be produced in any length, a 
non-traditional optimization of the on-center spacing might 
prove cost-effective in those cases. Similarly, the development 
of new structural wood-based composites may at some point 
make it economically viable to produce them to order instead of 
a standard size. 

Problem Definition 
The optimization problem introduced above was 

implemented as a minimization of the cost of a 1000 mm 
section of a stud wall. All parameters, design variables, the 
objective function and all constraints have been inserted into an 
Excel spreadsheet for ready processing. The problem was 
defined as follows: 

 
Design variables: 
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where: C = cost of 1000 mm wall section 
 
Such that the following constraints are satisfied: 
 
Structural (stud) constraint [2]: 
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where: cf  = axial stress, cF  = compressive strength 

bf  = bending stress, bF  = bending strength 
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Structural (panel, 100 mm section) constraint: 
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where: bf  = bending stress, bF  = bending strength 

of panel with faces aligned perpendicular to 
stud 

 
Deflection (panel, 100 mm section) constraint: 
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Thermal insulation constraint (min. R-value): 
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ewf /1 = , ewef /)(2 −=  
1 = section through stud 
2 = section through insulation 

 
Nail spacing constraint: 

0min5 ≤−= wwg  
 
where: gapwaw += 4min  
  a = edge distance of nail 
  wgap = optional gap between plates 
 
Due to the nonlinear nature of some of the constraints, it 

was intended to optimize this problem using a genetic algorithm 
(GA). It is also the intention of the author to create a GA 
software that could later be used for more complex problems. 
Although architectural optimization problems are linear in most 
cases, constraints can prove to be nonlinear or even 
discontinuous. This poses problems for gradient-based methods 
and may be solved more accurately using genetic algorithms. 
An example could be an if-then constraint, where an integer 
number of windows were inserted into a continuous length wall. 
The following section briefly introduces the concept of GAs. 

Genetic Algorithms (GAs) 
Genetic algorithms (GAs) are based on biological 

principles of evolution and provide an interesting alternative to 
“classic” gradient-based optimization methods. They are 
particularly useful for highly nonlinear problems and models, 
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whose computation time is not a primary concern. Similar to 
other methods such as Simulated Annealing, they perform better 
than gradient-based methods in finding a global optimum if a 
problem is highly nonlinear and features multiple local minima. 
In general, GAs approach the entire design space randomly and 
then improve the found design points by applying genetics-
based principles and probabilistic selection criteria. A thorough 
description of genetic algorithms can be found in [3]. 

Although a large number of modified algorithms are 
available, a GA typically proceeds in the following order: 

1. Start with a finite population of randomly chosen 
chromosomes (“design points”) in the design 
space. This population constitutes the first 
generation (“iteration”), 

2. Evaluate their fitness (“function value”), 
3. Rank the chromosomes by their fitness, 
4. Apply genetic operators (mating): reproduction 

(reproduce chromosomes with a high fitness), 
cross-over (swap parts of two chromosomes, 
chosen based on their fitness to create their 
offspring) and mutation (apply a random 
perturbation to parts of a chromosome). All of 
these operators are assigned a probability of 
occurrence, 

5. Assemble the new generation from these 
chromosomes and evaluate their fitness, 

6. Apply genetic mating as before and iterate until 
convergence is achieved or the process is stopped. 

As can be seen above, the primary usefulness of the GA is 
that it starts by sampling the entire design space, possibly 
enabling it to pick points close to a global optimum. It then 
proceeds to apply changes to the ranked individual design 
points, which leads to an improvement of the population fitness 
from one generation to another. To ensure that it doesn’t 
converge on an inferior point, mutation is randomly applied, 
which perturbates design points and allows for the evaluation 
and incorporation of remote points. 

The main advantages of GAs are: 
 The nature of the optimization model does not need 

to be known. This makes GAs very interesting for 
complex problems or for users inexperienced in 
gradient-based optimization techniques. 

 The optimization model and its constraints do not 
have to be continuous or even real values. No 
simplification of a problem is necessary to 
accommodate it to a particular algorithm (e.g. 
linearization). 

 They are readily available and easily implemented. 
The main disadvantages are: 
 A large number of parameters need to be set. This is 

simplified by information from literature, but 
problem-specific adjustments might need to be 
made. 

 Due to the comparatively very large number of 
function calls, GAs require significant 

computational resources. This makes them 
unattractive for optimization problems with 
computationally demanding analyses. 

MODEL AND SOFTWARE DEVELOPMENT 
Several software implementations of GAs are currently 

available as open-source on various websites. An example can 
be found in [4]. While most of them are available as C++ code, 
it was intended to write the GA Optimization for Excel software 
in Delphi, an RAD (Rapid Application Development) Object-
Pascal environment for the Windows platform. Although C++, 
FORTRAN or any other code can be compiled into a DLL and 
then used by any software development environment, an 
existing GA implementation in Delphi was chosen for this 
project. 

 The GA code written by Soft Tech Design, Inc. [5] is a 
very well programmed Pascal implementation into an object 
model. It features: 

 2 chromosome types: string and float 
 3 GA objects: string (for permutations), float (for 

real calculations) and sequence list (e.g. for the 
traveling salesman problem) 

 3 cross-over types: one point, two point and uniform 
(0.5 < p < 0.8) 

 Elitism (the two chromosomes with the highest 
fitness automatically advance to the next generation) 

 Chance for random selection (not based on fitness) 
 Mutation of lowest fit chromosomes 
 Option for a number of preliminary runs that select 

the fittest chromosomes from the preliminary 
generations and then use them as starting generation 
for the “real” runs. 

Since the given implementation as an Excel optimization 
program solely works with real values, only the float GA object 
was implemented here.  

In addition to the above, several functions were added by 
the author in developing the GA Optimization for Excel 
software: 

 Limits on the design variables: All design 
variables can have lower and upper limits. If during 
the GA process, a gene reaches or overshoots any of 
these limits its value is set to the limit itself. This 
effectively provides side constraints for all 
variables. 

 Termination criterion: After genetic mating, an 
average deviation of the individual chromosomes 
from the population average is calculated. This is 
then compared to a predefined convergence 
tolerance value and further computations are 
stopped if the criterion is fulfilled as follows: 

tol
schromosome

iavg

n

FF
ε≤

−∑  

 Minimization and target value option: Since GAs 
look for the individual chromosome (design point) 
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with the highest fitness, they effectively are 
maximization routines. To also allow for 
minimization, a simple modification was added 
where: 

)( FMaximizeFMinimize −=  
Consequently, driving the result to a target value 
requires: 

TargetFMinimizeTargetF −= weFor  
Both options were added to the maximization 
routine. 

 Constraints: The option for constraints on the 
optimization model was added by including an 
“absolute penalty method”. This was done in the 
subroutine (object method) that calculates the fitness 
of the individual chromosome. 
By applying an absolute penalty, the fitness is set to 
a very low value (e.g. -10,000) when the 
chromosome (design point) violates a constraint. 
This results in the chromosome being ranked at a 
very low fitness and thus being ultimately 
“outgrown” by fitter individuals. 
The benefit of this method is that it does not present 
a potential variable overflow as can occur with 
scaled methods (e.g. exterior penalty function) since 
the penalty value and thus the adjusted fitness value 
is a constant number. On the other hand, the 
disadvantage is that this method does not provide a 
scaled fitness where some only slightly violating 
chromosomes could be ranked more favorably than 
others. 

 Excel connectivity: Design values (gene values) are 
given to Excel and function values (fitness values) 
and constraint values are read from Excel through 
the Windows COM (Component Object Model) 
interface. This allows for an easy data transfer, 
which is direct (it does not need text files), 
immediate and object-based, since the Excel 
application object is created and called directly from 
within the Delphi application. 

 GUI (user interface): A Windows user interface 
was created that allows the user to use the GA 
model without prior knowledge. As can be seen in 
Figure 2 and Figure 3, an Excel file, which contains 
the calculation model, can be selected and cell 
references for the function value, all design 
variables and all constraints can be specified. On 
another tab, the user can modify the given GA 
parameters and then on a third tab, the user can run 
the GA algorithm and capture its output. Optionally, 
the user can save and restore all GA and model 
parameters in a text file and restore them from there 
later. 

Figure 2 and Figure 3 are images of the user interface. The 
software can be downloaded for free from the author’s website: 
http://www.alexschreyer.de/projects/xloptim/ 

 

 
Figure 2 - GA Optimization for Excel user interface 

 

 
Figure 3 - GA settings tab 

GA MODEL VERIFICATION – UNCONSTRAINED 
To test the optimization routine and debug the software, a 

function was chosen that featured a global maximum and 
several local maxima. It was taken from literature [6] and is 
defined as: 
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The function was implemented into the maximization 

routine as: 
 

),( 21 XXFMaximize  
 
s.t.  1,0 21 ≤≤ XX  (side constraints) 
 
This function is ideally suited to test a global maximization 

routine since it features several high and steep “ripples” in the 
vicinity of the optimal solution (which is at X1 = 0.5 and 
X2 = 0.5 with a function value of F = 1.0). It can be expected 
that if a gradient-based optimization routine were started from 
an initial point not on the hill closest to the optimum, it would 
likely fail to reach the optimum since it could not escape from 
the surrounding ripples. Figure 4 illustrates this function in the 
X1, X2-space. 

 

 
Figure 4 - Function plot 

To comparatively test this function using a gradient-based 
optimization routine, it was implemented into an Excel 
spreadsheet and maximized using the Excel Solver add-on. The 
Solver features a modified Generalized Reduced Gradient 
(GRG2) algorithm. 

After several runs, it became obvious that any starting point 
within the design space led to convergence on a local maximum 
(one of the ripples) instead of the global maximum (the peak). 
This is clearly explained by the gradient-search methodology 
and the inability to escape local minima once they are 
encountered. It should be noted, though, that when the extreme 
points of the design space (0,0 – 0,1 – 1,1 – 1,0 or their close 
vicinity) were chosen as starting points, Solver managed to 
converge quickly on the optimal solution (0.5,0.5). This can be 
explained by the gradient at those locations, which points 
directly towards the maximum (see Figure 4). 

Using the GA Optimization for Excel software, the same 
spreadsheet was used to test the effect of the GA parameters on 
convergence behavior. In theory, the GA optimization should be 
able to find the global maximum. Nevertheless, the nature of the 
function does not provide much space around the maximum and 
since the GA is based on an initial set of random points, the 

chance of starting with a point within this region is quite small. 
The region around the peak can be quantified as: 

 24n
A π
=  

To test the performance of the GA optimization routine, all 
settings parameters (see Figure 3) were varied independently 
from an initial set of well performing parameters (8, 0.8, 0.1, 
0.01, One Point, 1e-5, 1e-5, 12, 100, 2, 10 – read in top to 
bottom order with respect to Figure 3). The performance was 
then evaluated by the following error term and averaged over 
five runs: 

 

1
1),( 21 −

=
XXFε  

 
The following conclusions were drawn from the parametric 

study: 
 Increasing the number of chromosomes per 

population directly increased the accuracy of the 
solution. This was most pronounced when the 
number changed from 8 to 16 to 50. Changing it to 
100 did not yield a significant improvement. 
Evidently, a higher number of chromosomes 
provides a higher chance of starting closer to the 
optimum. Since the number of chromosomes 
generally determines the number of function calls, it 
should be kept to a minimum. 

 Increasing the cross-over probability from 0.6 to 
0.8 to 0.9 also yielded an improved performance. A 
cross-over probability of 1, however, decreased the 
accuracy significantly. Also, changing the cross-
over method from One Point to Two Points to 
Uniform did not change the error much. The best 
performance was here observed with the “classic” 
one-point cross-over. 

 The two “insurance” parameters, probability of 
random selection and mutation probability were 
both found to be well performing at the 0.1 level. 
Although this is quite high compared to the 
recommended values for the mutation probability 
(0.01 – 0.02), the nature of the test function and the 
small target (peak) area explain the necessity of 
having these parameters at high levels. When either 
parameter was chosen at too high levels (0.5 for 
example), it was observed that they led to an 
instable convergence and necessitated a significantly 
higher number of generations before convergence. 

 The effect of running preliminary generations and 
selecting the best performing individuals for the 
starting generation of the actual runs was found to 
be significant. Comparing only the number of 
preliminary runs, a number of 2 showed the lowest 
and 8 the best performance – with 8 preliminary 
runs showing a similar performance as no 
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preliminary runs at all. In that case, though, the 
numbers of necessary generations were 20.6 and 
11.4, respectively. As could be expected, the 
preliminary runs provide a better starting pool and 
thus reduce the number of actual generations before 
convergence is achieved. When the number of 
generations per preliminary run was set to a higher 
value (50), performance was increased. Similar to 
the total number of generations, however, the 
preliminary run generations also contribute to the 
total number of function calls and should be kept to 
a minimum. 

 Changing the convergence tolerance from 10-5 to 
10-12 did not yield an improvement but rather 
increased the number of generations. Comparing 
numeric precision, it was found that the 
performance actually was highest at the 3-digits and 
approximately similar at the 6-digits and 12-digits 
level. 

This parametric study resulted in a set of individually well 
performing parameters (32, 0.9, 0.1, 0.1, One Point, 1e-5, 1e-5, 
12, 100, 8, 20). These, however, tended to yield a large number 
of function calls, so they were modified to the following 
parameters: 16, 0.9, 0.1, 0.1, One Point, 1e-5, 1e-5, 6, 100, 4, 
10, which resulted in small error values (ε = 2.24% after 14.6 
generations and 873.6 function calls; all averaged over five 
runs). Figure 5 illustrates a sample run with these parameters. 
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Figure 5 – Example of an unconstrained 

 parametric study run 

GA MODEL VERIFICATION – CONSTRAINED 
Similar to the unconstrained model verification, a function 

was chosen that featured two design variables and several 
constraints (two in this case). The minimization case was again 
taken from literature [7] and is of the following form: 

 
Minimize  2121 ),( XXXXF +=  

 
s.t.  022),( 21211 ≤−+−= XXXXg  

  068),( 2
2

11212 ≤−+−= XXXXXg  
  10,10 21 ≤≤− XX  (side constraints) 
 
Although this function was not as severe by nature as the 

one chosen above, it allowed testing the parameters that were 
related to constraints. Figure 6 illustrates the constraint 
functions g1 and g2. 

 

 
Figure 6 - Constraint functions 

A limited parametric study was performed on the 
minimization problem. Initially, the best performing parameters 
from the unconstrained parametric study were chosen and then 
individually modified. The application of constraint penalties 
followed the previously described absolute penalty method. 

The following conclusions could be drawn from this study: 
 Due to the nature of the elimination system 

implemented by the absolute penalty method, a 
strong influence of the number of preliminary 
runs on the final accuracy was found. When no 
preliminary runs were specified, the error of the 
final result was 103.3%. This reduced to 21.5% and 
3.95% when 4 and 8 preliminary runs, respectively, 
were executed. This clearly shows that the larger 
number of preliminary runs eliminates many 
individuals with constraint violations and provides a 
population for the first generation that is well within 
the feasible design space.  

 When no preliminary runs were specified, the 
number of chromosomes per generation became 
highly important. Since the initial generation 
provides the base for all subsequent ones, a first 
generation of all “constraint violators” will provide 
a full generation with the same function value (i.e. 
the penalty value). When bounds are not too wide 
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and the number of chromosomes is not too small, 
this should not become an issue. One case was even 
observed where all but one individual of the initial 
generation had violated constraints, yet the final 
error value (after 39 generations) was only 2%. 

 Since the GA essentially works with random 
numbers (of a certain precision), it is rather 
impossible to hit a target value (e.g. 0) with a high 
precision and without rounding. As a result, a 
constraint tolerance was implemented into the 
software that makes runs possible, where we want to 
use equality constraints. Several runs with constraint 
tolerances of 10-5 and 10-12 together with the given 
minimization problem (which features very large 
bounds) showed a high decrease in accuracy. It is 
thus recommended to only use the tolerance value 
where equality constraints are employed. 

Combining the results from both parametric studies, the 
best performing settings were: 16, 0.9, 0.1, 0.1, One Point, 
1e-5, 0, 6, 100, 8, 10 (read in top to bottom order with 
respect to Figure 3). 

APPLICATION OF GA FOR DESIGN OF A STUD WALL 
The optimization of the stud wall dimensions was 

performed using the values given in Table 1. Properties given in 
Table 1 were taken from pertinent literature and represent 
typical values. The wall was assumed to be located on the first 
floor under two upper stories and assumed to be an exterior 
wall. Cost values were averaged and include labor. 

 
Height of wall =  2438 mm 

Line load on wall =  20.04 N/mm 
Wind pressure on wall =  0.00065 N/mm2 

Wood compression strength =  12.9 N/mm2 
Wood bending strength =  14.8 N/mm2 

Wood MOE =  11000 N/mm2 
Panel bending strength =  15 N/mm2 

Panel MOE =  6000 N/mm2 
Nail d =  3.7 mm 

Edge distance (x*d) =  2.5  
Gap between sheathing =  0 mm 

Cost studs & plates =  1.54E-06 $/mm3 
Cost plywood =  1.53E-05 $/mm2 

Cost GWB =  1.24E-05 $/mm2 
Cost insulation =  5.47E-08 $/mm3 

Insulation heat transmission =  0.05 W/(m*K) 
Stud heat transmission =  0.13 W/(m*K) 

GWB heat transmission =  0.25 W/(m*K) 
OSB/ply. heat transmission =  0.15 W/(m*K) 

Min R-Value for wall =  3.0 (m2*K)/W 

Table 1 - Parameters for stud wall 

In a first set of runs, the parameters found in the previous 
chapter were kept and the stud wall model was run with the 
constraints given. Five runs were performed and averaged to 
determine the differences. As can be seen in Table 2, all values 
of interest averaged within close range. The total cost averaged 
at $ 109.23 per 1 meter wall with a standard deviation of only 
$2.03. The largest differences were in the depth of the stud and 
the stud spacing, i.e. the insulated space. 

 
 Average St. Dev. 

w =  38.5 1.78 
d =  151.9 5.10 
e =  988.2 18.47 

Actual R =  3.1 0.09 
Total cost =  $109.23 2.03 

Criterion efficiency:   
Stud combined strength 36.90% 0.05 
Panel bending strength 8.75% 0.00 

Panel deflection 94.59% 0.05 
Difference to min. geometry 4.11% 0.05 

Thermal insulation target 103.57% 0.03 
Number of generations 59.8 30.62 

Table 2 - Runs with 16 chromosomes 

It was found that the optimization routine always reduced 
the stud width to the minimum (wmin = 37 mm). This is only 
prudent from a structural perspective. Also, since the thermal 
conductivity through the stud is quite a bit higher than through 
the insulated space, a reduction increases the overall thermal 
resistance. 

The depth d was also within close tolerances since it 
determines the thickness of the insulation. Its variability was 
higher than w mainly because d and e provided flexibility (when 
one increased, the other one decreased). 

It is interesting to note that at the R = 3.0 insulation level, 
the stud strength constraint was not active and stud strength was 
only efficient at ~40%. With this high insulation value, the 
thermal insulation target constraint was fully active. Since panel 
deflection determined the maximum e, this constraint was also 
almost active. 

 
 Average St. Dev. 

w =  37.5 0.51 
d =  148.5 2.46 
e =  982.6 8.63 

Actual R =  3.0 0.05 
Total cost =  $107.82 0.90 

Criterion efficiency:   
Stud combined strength 40.40% 0.03 
Panel bending strength 8.65% 0.00 
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Panel deflection 92.95% 0.02 
Difference to min. geometry 1.26% 0.01 

Thermal insulation target 101.53% 0.02 
Number of generations 87.2 28.62 

Table 3 - Runs with 32 chromosomes 

A comparative set of runs was performed with 32 
chromosomes and all other GA parameters as before. This 
improved the accuracy of all results, but in many cases, 
convergence was not achieved before the 100 generation limit. 
Average results from five of these runs are shown in Table 3. 

VERIFICATION OF RESULTS 
Due to the closed-form nature of this problem, it was 

possible to comparatively solve the optimization using Excel’s 
Solver add-on. Table 4 shows the results of that calculation. 

 
 Result 

w =  37.0 
d =  145.8 
e =  1007.0 

Actual R =  3.0 
Total cost =  $106.34 

Criterion efficiency:  
Stud combined strength 45.12% 
Panel bending strength 9.08% 

Panel deflection 100.00% 
Difference to min. geometry 0.00% 

Thermal insulation target 100.00% 

Table 4 - Solver results 

While the GA calculations took 4480 generations at the 
maximum to reach the solution shown in Table 3 (32 
chromosomes * 100 generations + 4 preliminary runs * 32 
chrom. * 10 preliminary generations), only 10 iterations were 
necessary for Solver to arrive at its solution. Although this 
clearly shows the efficiency of a gradient-based solver over a 
GA solver for this problem, the applicability of the GA software 
has been proven. 

SUMMARY 
This project successfully created a GA optimization 

software that optimizes problems, which reside on Excel 
spreadsheets. Parameter tests have been performed and the 
model was calibrated to a high degree of efficiency. Ultimately, 
it was applied to a stud-wall design, which minimized the cross-
sectional properties and maximized the thermal resistance while 
reducing the cost of the wall as much as possible. 
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