
 1 Copyright © 2005 by Alexander C. Schreyer,
mail@alexschreyer.de

MIE 616 “Optimization in Engineering Design”
Term Paper

May 16th, 2005, Amherst, MA

1

THERMAL AND STRUCTURAL STUD WALL DESIGN OPTIMIZATION IN EXCEL
USING GENETIC ALGORITHMS

Alexander C. Schreyer
Building Materials and Wood Technology, University of Massachusetts, Amherst

ABSTRACT
This paper presents a method to define the optimal wood

stud wall arrangement with respect to structural and thermal
performance criteria. Design variables are the stud dimensions
w and d and the stud spacing e.

To solve the optimization task (minimize the cost of the
wall), an optimization routine based on genetic algorithms
(GAs) was implemented into a Windows-based software. This
software is capable of performing general GA optimization
within an Excel spreadsheet.

Two calibration cases – an unconstrained and a constrained
function – were run using the software. It was found to perform
well and GA parameters were optimized in a parametric study.

Using the parameters found in the parametric study, the
stud wall optimization was performed and compared to a
gradient-based optimization method. While the accuracy of the
results was within close proximity, the GA algorithm used far
more function calls than the “classic method”.

INTRODUCTION

In the US, most residential houses are build using light
wood framing (“stud framing”, “2x4 construction”, “stick-
built”, see Figure 1). This technology originated from the
European tradition of half-timbered houses, which was brought
to America by the first settlers. It is highly efficient since it uses
small-dimension structural members and sheathing, which is
fastened to the framing using light-gauge nails. While the
structural members provide bending resistance and axial
(compression) support, the sheathing provides racking strength,
diaphragm action and continuous support against buckling. In
the case of the interior-side gypsum wallboard (GWB), it also
provides a finishable surface. A major benefit of this type of
construction is that in its basic form (“platform framing”) it
does not need heavy machinery and can be built using a small
number of workers.

Figure 1 - Light wood-framing construction site

This paper seeks to define the “ideal” stud size and on-

center spacing given a set of realistic parameters together with
constraints based on the structural and thermal performance of
the wall. The basis of this hypothetical investigation is the
difference between structural member and wall dimensions
between the US and Europe. In the US it is common to build
with 2x… sawn lumber material, which has an actual width of
1.5 in. and depths of 1.5, 3.5, 5.5, 7.25, 9.25 and 11.25 in. Wall
studs are typically 2x4s or 2x6s and on-center spacing of these
studs in walls is typically 16 in. In Germany, construction
lumber is sold in multiples of 20 mm and the typical stud size is
60 mm x 120 mm. While the width is again held constant, the
thickness can be increased up to 200 mm. On-center spacing is
usually 625 mm.

To reduce cut-offs of panel material, on-center spacing is in
both cases set to an even fraction of the panel widths. In the US,
the standard panel size is 4 ft x 8 ft and 16 in. is thus 1/3rd of the
panel width. In Germany, the standard panel width is 1250 mm
and 625 mm is half of that dimension.

 2 Copyright © 2005 by Alexander C. Schreyer,
mail@alexschreyer.de

Although an adherence to standard dimensions typically
proves the most cost-effective route, newer research suggests,
that larger panel dimensions can significantly increase racking
strength [1]. Since most panels nowadays are made of Oriented
Strand Board (OSB), which can be produced in any length, a
non-traditional optimization of the on-center spacing might
prove cost-effective in those cases. Similarly, the development
of new structural wood-based composites may at some point
make it economically viable to produce them to order instead of
a standard size.

Problem Definition
The optimization problem introduced above was

implemented as a minimization of the cost of a 1000 mm
section of a stud wall. All parameters, design variables, the
objective function and all constraints have been inserted into an
Excel spreadsheet for ready processing. The problem was
defined as follows:

Design variables:

[]Tedw=X

where:

e-w w

d

Plywood/OSB Sheathing

Gypsum
Wallboard

Insulation

Minimze:

InsulationGWBSheathPlySheathStudPlates CCCCC +++=)(X

where: C = cost of 1000 mm wall section

Such that the following constraints are satisfied:

Structural (stud) constraint [2]:

01
)1(

2

1 ≤−
−

+







=

cExcb

b

c

c

FfF
f

F
fg

where: cf = axial stress, cF = compressive strength

bf = bending stress, bF = bending strength

 2
3.0
λ

EFcEx = , dl /=λ = slenderness

Structural (panel, 100 mm section) constraint:

012 ≤−=
b

b

F
fg

where: bf = bending stress, bF = bending strength

of panel with faces aligned perpendicular to
stud

Deflection (panel, 100 mm section) constraint:

0
400384

5
3 ≤−=−=

e
IE

qeg
PanelPanel

AllowablePanel δδ

where: PanelE = MOE of panel

12
100 3

Panel
Panel

tI ⋅
=

Thermal insulation constraint (min. R-value):

0arg4 ≤−= etttotal RRg

where:
2211 //

1
RfRf

Rtotal +
=

08.0
13.01

+
+++=

plyply

woodwoodGWBGWB

d
ddR

λ
λλ

08.0
13.02

+
+++=

plyply

insinsGWBGWB

d
ddR

λ
λλ

ewf /1 = , ewef /)(2 −=
1 = section through stud
2 = section through insulation

Nail spacing constraint:

0min5 ≤−= wwg

where: gapwaw += 4min
 a = edge distance of nail
 wgap = optional gap between plates

Due to the nonlinear nature of some of the constraints, it

was intended to optimize this problem using a genetic algorithm
(GA). It is also the intention of the author to create a GA
software that could later be used for more complex problems.
Although architectural optimization problems are linear in most
cases, constraints can prove to be nonlinear or even
discontinuous. This poses problems for gradient-based methods
and may be solved more accurately using genetic algorithms.
An example could be an if-then constraint, where an integer
number of windows were inserted into a continuous length wall.
The following section briefly introduces the concept of GAs.

Genetic Algorithms (GAs)
Genetic algorithms (GAs) are based on biological

principles of evolution and provide an interesting alternative to
“classic” gradient-based optimization methods. They are
particularly useful for highly nonlinear problems and models,

 3 Copyright © 2005 by Alexander C. Schreyer,
mail@alexschreyer.de

whose computation time is not a primary concern. Similar to
other methods such as Simulated Annealing, they perform better
than gradient-based methods in finding a global optimum if a
problem is highly nonlinear and features multiple local minima.
In general, GAs approach the entire design space randomly and
then improve the found design points by applying genetics-
based principles and probabilistic selection criteria. A thorough
description of genetic algorithms can be found in [3].

Although a large number of modified algorithms are
available, a GA typically proceeds in the following order:

1. Start with a finite population of randomly chosen
chromosomes (“design points”) in the design
space. This population constitutes the first
generation (“iteration”),

2. Evaluate their fitness (“function value”),
3. Rank the chromosomes by their fitness,
4. Apply genetic operators (mating): reproduction

(reproduce chromosomes with a high fitness),
cross-over (swap parts of two chromosomes,
chosen based on their fitness to create their
offspring) and mutation (apply a random
perturbation to parts of a chromosome). All of
these operators are assigned a probability of
occurrence,

5. Assemble the new generation from these
chromosomes and evaluate their fitness,

6. Apply genetic mating as before and iterate until
convergence is achieved or the process is stopped.

As can be seen above, the primary usefulness of the GA is
that it starts by sampling the entire design space, possibly
enabling it to pick points close to a global optimum. It then
proceeds to apply changes to the ranked individual design
points, which leads to an improvement of the population fitness
from one generation to another. To ensure that it doesn’t
converge on an inferior point, mutation is randomly applied,
which perturbates design points and allows for the evaluation
and incorporation of remote points.

The main advantages of GAs are:
 The nature of the optimization model does not need

to be known. This makes GAs very interesting for
complex problems or for users inexperienced in
gradient-based optimization techniques.

 The optimization model and its constraints do not
have to be continuous or even real values. No
simplification of a problem is necessary to
accommodate it to a particular algorithm (e.g.
linearization).

 They are readily available and easily implemented.
The main disadvantages are:
 A large number of parameters need to be set. This is

simplified by information from literature, but
problem-specific adjustments might need to be
made.

 Due to the comparatively very large number of
function calls, GAs require significant

computational resources. This makes them
unattractive for optimization problems with
computationally demanding analyses.

MODEL AND SOFTWARE DEVELOPMENT
Several software implementations of GAs are currently

available as open-source on various websites. An example can
be found in [4]. While most of them are available as C++ code,
it was intended to write the GA Optimization for Excel software
in Delphi, an RAD (Rapid Application Development) Object-
Pascal environment for the Windows platform. Although C++,
FORTRAN or any other code can be compiled into a DLL and
then used by any software development environment, an
existing GA implementation in Delphi was chosen for this
project.

 The GA code written by Soft Tech Design, Inc. [5] is a
very well programmed Pascal implementation into an object
model. It features:

 2 chromosome types: string and float
 3 GA objects: string (for permutations), float (for

real calculations) and sequence list (e.g. for the
traveling salesman problem)

 3 cross-over types: one point, two point and uniform
(0.5 < p < 0.8)

 Elitism (the two chromosomes with the highest
fitness automatically advance to the next generation)

 Chance for random selection (not based on fitness)
 Mutation of lowest fit chromosomes
 Option for a number of preliminary runs that select

the fittest chromosomes from the preliminary
generations and then use them as starting generation
for the “real” runs.

Since the given implementation as an Excel optimization
program solely works with real values, only the float GA object
was implemented here.

In addition to the above, several functions were added by
the author in developing the GA Optimization for Excel
software:

 Limits on the design variables: All design
variables can have lower and upper limits. If during
the GA process, a gene reaches or overshoots any of
these limits its value is set to the limit itself. This
effectively provides side constraints for all
variables.

 Termination criterion: After genetic mating, an
average deviation of the individual chromosomes
from the population average is calculated. This is
then compared to a predefined convergence
tolerance value and further computations are
stopped if the criterion is fulfilled as follows:

tol
schromosome

iavg

n

FF
ε≤

−∑

 Minimization and target value option: Since GAs
look for the individual chromosome (design point)

 4 Copyright © 2005 by Alexander C. Schreyer,
mail@alexschreyer.de

with the highest fitness, they effectively are
maximization routines. To also allow for
minimization, a simple modification was added
where:

)(FMaximizeFMinimize −=
Consequently, driving the result to a target value
requires:

TargetFMinimizeTargetF −= weFor
Both options were added to the maximization
routine.

 Constraints: The option for constraints on the
optimization model was added by including an
“absolute penalty method”. This was done in the
subroutine (object method) that calculates the fitness
of the individual chromosome.
By applying an absolute penalty, the fitness is set to
a very low value (e.g. -10,000) when the
chromosome (design point) violates a constraint.
This results in the chromosome being ranked at a
very low fitness and thus being ultimately
“outgrown” by fitter individuals.
The benefit of this method is that it does not present
a potential variable overflow as can occur with
scaled methods (e.g. exterior penalty function) since
the penalty value and thus the adjusted fitness value
is a constant number. On the other hand, the
disadvantage is that this method does not provide a
scaled fitness where some only slightly violating
chromosomes could be ranked more favorably than
others.

 Excel connectivity: Design values (gene values) are
given to Excel and function values (fitness values)
and constraint values are read from Excel through
the Windows COM (Component Object Model)
interface. This allows for an easy data transfer,
which is direct (it does not need text files),
immediate and object-based, since the Excel
application object is created and called directly from
within the Delphi application.

 GUI (user interface): A Windows user interface
was created that allows the user to use the GA
model without prior knowledge. As can be seen in
Figure 2 and Figure 3, an Excel file, which contains
the calculation model, can be selected and cell
references for the function value, all design
variables and all constraints can be specified. On
another tab, the user can modify the given GA
parameters and then on a third tab, the user can run
the GA algorithm and capture its output. Optionally,
the user can save and restore all GA and model
parameters in a text file and restore them from there
later.

Figure 2 and Figure 3 are images of the user interface. The
software can be downloaded for free from the author’s website:
http://www.alexschreyer.de/projects/xloptim/

Figure 2 - GA Optimization for Excel user interface

Figure 3 - GA settings tab

GA MODEL VERIFICATION – UNCONSTRAINED
To test the optimization routine and debug the software, a

function was chosen that featured a global maximum and
several local maxima. It was taken from literature [6] and is
defined as:

)(2

21
22

)(cos),(σπ rernXXF −⋅⋅⋅=

where: 2

2
2

1
2)5.0()5.0(XXr −+−=

 9=n
 15.02 =σ

 5 Copyright © 2005 by Alexander C. Schreyer,
mail@alexschreyer.de

The function was implemented into the maximization

routine as:

),(21 XXFMaximize

s.t. 1,0 21 ≤≤ XX (side constraints)

This function is ideally suited to test a global maximization

routine since it features several high and steep “ripples” in the
vicinity of the optimal solution (which is at X1 = 0.5 and
X2 = 0.5 with a function value of F = 1.0). It can be expected
that if a gradient-based optimization routine were started from
an initial point not on the hill closest to the optimum, it would
likely fail to reach the optimum since it could not escape from
the surrounding ripples. Figure 4 illustrates this function in the
X1, X2-space.

Figure 4 - Function plot

To comparatively test this function using a gradient-based
optimization routine, it was implemented into an Excel
spreadsheet and maximized using the Excel Solver add-on. The
Solver features a modified Generalized Reduced Gradient
(GRG2) algorithm.

After several runs, it became obvious that any starting point
within the design space led to convergence on a local maximum
(one of the ripples) instead of the global maximum (the peak).
This is clearly explained by the gradient-search methodology
and the inability to escape local minima once they are
encountered. It should be noted, though, that when the extreme
points of the design space (0,0 – 0,1 – 1,1 – 1,0 or their close
vicinity) were chosen as starting points, Solver managed to
converge quickly on the optimal solution (0.5,0.5). This can be
explained by the gradient at those locations, which points
directly towards the maximum (see Figure 4).

Using the GA Optimization for Excel software, the same
spreadsheet was used to test the effect of the GA parameters on
convergence behavior. In theory, the GA optimization should be
able to find the global maximum. Nevertheless, the nature of the
function does not provide much space around the maximum and
since the GA is based on an initial set of random points, the

chance of starting with a point within this region is quite small.
The region around the peak can be quantified as:

 24n
A π
=

To test the performance of the GA optimization routine, all
settings parameters (see Figure 3) were varied independently
from an initial set of well performing parameters (8, 0.8, 0.1,
0.01, One Point, 1e-5, 1e-5, 12, 100, 2, 10 – read in top to
bottom order with respect to Figure 3). The performance was
then evaluated by the following error term and averaged over
five runs:

1
1),(21 −

=
XXFε

The following conclusions were drawn from the parametric

study:
 Increasing the number of chromosomes per

population directly increased the accuracy of the
solution. This was most pronounced when the
number changed from 8 to 16 to 50. Changing it to
100 did not yield a significant improvement.
Evidently, a higher number of chromosomes
provides a higher chance of starting closer to the
optimum. Since the number of chromosomes
generally determines the number of function calls, it
should be kept to a minimum.

 Increasing the cross-over probability from 0.6 to
0.8 to 0.9 also yielded an improved performance. A
cross-over probability of 1, however, decreased the
accuracy significantly. Also, changing the cross-
over method from One Point to Two Points to
Uniform did not change the error much. The best
performance was here observed with the “classic”
one-point cross-over.

 The two “insurance” parameters, probability of
random selection and mutation probability were
both found to be well performing at the 0.1 level.
Although this is quite high compared to the
recommended values for the mutation probability
(0.01 – 0.02), the nature of the test function and the
small target (peak) area explain the necessity of
having these parameters at high levels. When either
parameter was chosen at too high levels (0.5 for
example), it was observed that they led to an
instable convergence and necessitated a significantly
higher number of generations before convergence.

 The effect of running preliminary generations and
selecting the best performing individuals for the
starting generation of the actual runs was found to
be significant. Comparing only the number of
preliminary runs, a number of 2 showed the lowest
and 8 the best performance – with 8 preliminary
runs showing a similar performance as no

 6 Copyright © 2005 by Alexander C. Schreyer,
mail@alexschreyer.de

preliminary runs at all. In that case, though, the
numbers of necessary generations were 20.6 and
11.4, respectively. As could be expected, the
preliminary runs provide a better starting pool and
thus reduce the number of actual generations before
convergence is achieved. When the number of
generations per preliminary run was set to a higher
value (50), performance was increased. Similar to
the total number of generations, however, the
preliminary run generations also contribute to the
total number of function calls and should be kept to
a minimum.

 Changing the convergence tolerance from 10-5 to
10-12 did not yield an improvement but rather
increased the number of generations. Comparing
numeric precision, it was found that the
performance actually was highest at the 3-digits and
approximately similar at the 6-digits and 12-digits
level.

This parametric study resulted in a set of individually well
performing parameters (32, 0.9, 0.1, 0.1, One Point, 1e-5, 1e-5,
12, 100, 8, 20). These, however, tended to yield a large number
of function calls, so they were modified to the following
parameters: 16, 0.9, 0.1, 0.1, One Point, 1e-5, 1e-5, 6, 100, 4,
10, which resulted in small error values (ε = 2.24% after 14.6
generations and 873.6 function calls; all averaged over five
runs). Figure 5 illustrates a sample run with these parameters.

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
X1

X 2

Generation 0
After Prelim. Runs
Generation 12

Figure 5 – Example of an unconstrained

 parametric study run

GA MODEL VERIFICATION – CONSTRAINED
Similar to the unconstrained model verification, a function

was chosen that featured two design variables and several
constraints (two in this case). The minimization case was again
taken from literature [7] and is of the following form:

Minimize 2121),(XXXXF +=

s.t. 022),(21211 ≤−+−= XXXXg

 068),(2
2

11212 ≤−+−= XXXXXg
 10,10 21 ≤≤− XX (side constraints)

Although this function was not as severe by nature as the

one chosen above, it allowed testing the parameters that were
related to constraints. Figure 6 illustrates the constraint
functions g1 and g2.

Figure 6 - Constraint functions

A limited parametric study was performed on the
minimization problem. Initially, the best performing parameters
from the unconstrained parametric study were chosen and then
individually modified. The application of constraint penalties
followed the previously described absolute penalty method.

The following conclusions could be drawn from this study:
 Due to the nature of the elimination system

implemented by the absolute penalty method, a
strong influence of the number of preliminary
runs on the final accuracy was found. When no
preliminary runs were specified, the error of the
final result was 103.3%. This reduced to 21.5% and
3.95% when 4 and 8 preliminary runs, respectively,
were executed. This clearly shows that the larger
number of preliminary runs eliminates many
individuals with constraint violations and provides a
population for the first generation that is well within
the feasible design space.

 When no preliminary runs were specified, the
number of chromosomes per generation became
highly important. Since the initial generation
provides the base for all subsequent ones, a first
generation of all “constraint violators” will provide
a full generation with the same function value (i.e.
the penalty value). When bounds are not too wide

 7 Copyright © 2005 by Alexander C. Schreyer,
mail@alexschreyer.de

and the number of chromosomes is not too small,
this should not become an issue. One case was even
observed where all but one individual of the initial
generation had violated constraints, yet the final
error value (after 39 generations) was only 2%.

 Since the GA essentially works with random
numbers (of a certain precision), it is rather
impossible to hit a target value (e.g. 0) with a high
precision and without rounding. As a result, a
constraint tolerance was implemented into the
software that makes runs possible, where we want to
use equality constraints. Several runs with constraint
tolerances of 10-5 and 10-12 together with the given
minimization problem (which features very large
bounds) showed a high decrease in accuracy. It is
thus recommended to only use the tolerance value
where equality constraints are employed.

Combining the results from both parametric studies, the
best performing settings were: 16, 0.9, 0.1, 0.1, One Point,
1e-5, 0, 6, 100, 8, 10 (read in top to bottom order with
respect to Figure 3).

APPLICATION OF GA FOR DESIGN OF A STUD WALL
The optimization of the stud wall dimensions was

performed using the values given in Table 1. Properties given in
Table 1 were taken from pertinent literature and represent
typical values. The wall was assumed to be located on the first
floor under two upper stories and assumed to be an exterior
wall. Cost values were averaged and include labor.

Height of wall = 2438 mm

Line load on wall = 20.04 N/mm
Wind pressure on wall = 0.00065 N/mm2

Wood compression strength = 12.9 N/mm2
Wood bending strength = 14.8 N/mm2

Wood MOE = 11000 N/mm2
Panel bending strength = 15 N/mm2

Panel MOE = 6000 N/mm2
Nail d = 3.7 mm

Edge distance (x*d) = 2.5
Gap between sheathing = 0 mm

Cost studs & plates = 1.54E-06 $/mm3
Cost plywood = 1.53E-05 $/mm2

Cost GWB = 1.24E-05 $/mm2
Cost insulation = 5.47E-08 $/mm3

Insulation heat transmission = 0.05 W/(m*K)
Stud heat transmission = 0.13 W/(m*K)

GWB heat transmission = 0.25 W/(m*K)
OSB/ply. heat transmission = 0.15 W/(m*K)

Min R-Value for wall = 3.0 (m2*K)/W

Table 1 - Parameters for stud wall

In a first set of runs, the parameters found in the previous
chapter were kept and the stud wall model was run with the
constraints given. Five runs were performed and averaged to
determine the differences. As can be seen in Table 2, all values
of interest averaged within close range. The total cost averaged
at $ 109.23 per 1 meter wall with a standard deviation of only
$2.03. The largest differences were in the depth of the stud and
the stud spacing, i.e. the insulated space.

 Average St. Dev.

w = 38.5 1.78
d = 151.9 5.10
e = 988.2 18.47

Actual R = 3.1 0.09
Total cost = $109.23 2.03

Criterion efficiency:
Stud combined strength 36.90% 0.05
Panel bending strength 8.75% 0.00

Panel deflection 94.59% 0.05
Difference to min. geometry 4.11% 0.05

Thermal insulation target 103.57% 0.03
Number of generations 59.8 30.62

Table 2 - Runs with 16 chromosomes

It was found that the optimization routine always reduced
the stud width to the minimum (wmin = 37 mm). This is only
prudent from a structural perspective. Also, since the thermal
conductivity through the stud is quite a bit higher than through
the insulated space, a reduction increases the overall thermal
resistance.

The depth d was also within close tolerances since it
determines the thickness of the insulation. Its variability was
higher than w mainly because d and e provided flexibility (when
one increased, the other one decreased).

It is interesting to note that at the R = 3.0 insulation level,
the stud strength constraint was not active and stud strength was
only efficient at ~40%. With this high insulation value, the
thermal insulation target constraint was fully active. Since panel
deflection determined the maximum e, this constraint was also
almost active.

 Average St. Dev.

w = 37.5 0.51
d = 148.5 2.46
e = 982.6 8.63

Actual R = 3.0 0.05
Total cost = $107.82 0.90

Criterion efficiency:
Stud combined strength 40.40% 0.03
Panel bending strength 8.65% 0.00

 8 Copyright © 2005 by Alexander C. Schreyer,
mail@alexschreyer.de

Panel deflection 92.95% 0.02
Difference to min. geometry 1.26% 0.01

Thermal insulation target 101.53% 0.02
Number of generations 87.2 28.62

Table 3 - Runs with 32 chromosomes

A comparative set of runs was performed with 32
chromosomes and all other GA parameters as before. This
improved the accuracy of all results, but in many cases,
convergence was not achieved before the 100 generation limit.
Average results from five of these runs are shown in Table 3.

VERIFICATION OF RESULTS
Due to the closed-form nature of this problem, it was

possible to comparatively solve the optimization using Excel’s
Solver add-on. Table 4 shows the results of that calculation.

 Result

w = 37.0
d = 145.8
e = 1007.0

Actual R = 3.0
Total cost = $106.34

Criterion efficiency:
Stud combined strength 45.12%
Panel bending strength 9.08%

Panel deflection 100.00%
Difference to min. geometry 0.00%

Thermal insulation target 100.00%

Table 4 - Solver results

While the GA calculations took 4480 generations at the
maximum to reach the solution shown in Table 3 (32
chromosomes * 100 generations + 4 preliminary runs * 32
chrom. * 10 preliminary generations), only 10 iterations were
necessary for Solver to arrive at its solution. Although this
clearly shows the efficiency of a gradient-based solver over a
GA solver for this problem, the applicability of the GA software
has been proven.

SUMMARY
This project successfully created a GA optimization

software that optimizes problems, which reside on Excel
spreadsheets. Parameter tests have been performed and the
model was calibrated to a high degree of efficiency. Ultimately,
it was applied to a stud-wall design, which minimized the cross-
sectional properties and maximized the thermal resistance while
reducing the cost of the wall as much as possible.

REFERENCES
[1] Durham, J., Lam, F., Prion, H.G.L. (2001) “Seismic

Resistance of Wood Shear Walls with Large OSB Panels”.
Journal of Structural Engineering, ASCE, 127 (12)

[2] AF&PA (2001). National Design Standard for Wood
Construction. American Forests & Paper Association,
Washington, DC

[3] Goldberg, D. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley

[4] Anonymous (2005). “GAlib, A C++ Library of Genetic
Algorithm Components”. At: http://lancet.mit.edu/ga/

[5] Soft Tech (2002). “GA Class Library”. At:
http://www.softtechdesign.com/products/GA_Delphi/GeneticAl
gorithm.htm

[6] Charbonneau, P., Knapp, B. (1995). “Users guide to
PIKAIA 1.0”. NCAR Technical note TN-418-IA

[7] Vanderplaats, G.N. (2001). Numerical Optimization
Techniques For Engineering Design. 3rd Edition, VR&D,
Colorado Springs, CO

